Ad
related to: leakage inductance of transformer
Search results
Results From The WOW.Com Content Network
Leakage inductance has the useful effect of limiting the current flows in a transformer (and load) without itself dissipating power (excepting the usual non-ideal transformer losses). Transformers are generally designed to have a specific value of leakage inductance such that the leakage reactance created by this inductance is a specific value ...
Knowledge of leakage inductance is also useful when transformers are operated in parallel. It can be shown that if the percent impedance [e] and associated winding leakage reactance-to-resistance (X/R) ratio of two transformers were the same, the transformers would share the load power in proportion to their respective ratings. However, the ...
The supply transformer (T) secondary winding is connected across the primary tuned circuit. It might seem that the transformer would be a leakage path for the RF current, damping the oscillations. However its large inductance gives it a very high impedance at the resonant frequency, so it acts as an open circuit to the oscillating current.
A leakage transformer, also called a stray-field transformer, has a significantly higher leakage inductance than other transformers, sometimes increased by a magnetic bypass or shunt in its core between primary and secondary, which is sometimes adjustable with a set screw. This provides a transformer with an inherent current limitation due to ...
Mutual inductance occurs when the change in current in one inductor induces a voltage in another nearby inductor. It is important as the mechanism by which transformers work, but it can also cause unwanted coupling between conductors in a circuit. The mutual inductance, , is also a measure of the coupling between two inductors.
However, the turns ratio can be controlled to reduce device stress on the input side. Additionally, the parasitic elements of the transformer, namely leakage inductance and magnetizing inductance can be used to modify the circuit into a resonant converter circuit which has much improved efficiency.
Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e.,
[8] [9] The transformer must be operating close to its saturation point, [10] at which a real transformer's leakage inductance decreases dramatically. [11] Following perturbation, the transformer oscillates in and out of the saturated and unsaturated modes of operation each cycle, such that the cycle-average inductance cancels out the power ...