When.com Web Search

  1. Ad

    related to: prime number reciprocal formula calculator with solution free

Search results

  1. Results From The WOW.Com Content Network
  2. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q. [8]

  3. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    That is, is a quadratic residue precisely if the number of solutions of this equation is divisible by . And this equation can be solved in just the same way here as over the rational numbers: substitute x = a + 1 , y = a t + 1 {\displaystyle x=a+1,y=at+1} , where we demand that a ≠ 0 {\displaystyle a\neq 0} (leaving out the two solutions ( 1 ...

  4. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  5. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...

  6. Reciprocity law - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_law

    There are several different ways to express reciprocity laws. The early reciprocity laws found in the 19th century were usually expressed in terms of a power residue symbol (p/q) generalizing the quadratic reciprocity symbol, that describes when a prime number is an nth power residue modulo another prime, and gave a relation between (p/q) and ...

  7. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.

  8. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The solution to this problem can be used to estimate the probability that two large random numbers are coprime. Two random integers in the range from 1 to n {\displaystyle n} , in the limit as n {\displaystyle n} goes to infinity, are relatively prime with a probability that approaches 6 / π 2 {\displaystyle 6/\pi ^{2}} , the reciprocal of the ...

  9. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    The sum of the reciprocals of all prime numbers diverges; that is: = + + + + + + + = This was proved by Leonhard Euler in 1737, [ 1 ] and strengthens Euclid 's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme 's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series) .