When.com Web Search

  1. Ads

    related to: identify the property of multiplication worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the identity property: [27] [28] =. Property of 0 Any number multiplied by 0 is 0. This is known as the zero property of multiplication: [27] = Negation −1 times any number is equal to the additive inverse of that number:

  3. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  4. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). [3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary.

  5. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...

  6. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  7. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    Addition and multiplication are compatible, which is expressed in the distribution law: a × (b + c) = (a × b) + (a × c). These properties of addition and multiplication make the natural numbers an instance of a commutative semiring. Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily ...