Search results
Results From The WOW.Com Content Network
The actual reactor would be located in a sealed, cylindrical vault 30 m (98 ft) underground, while the building above ground would be 22×16×11 m (72×52.5×36 ft) in size. This power plant is designed to provide 10 megawatts of electrical power with a 50 MW version available in the future. [3] The 4S is a fast neutron sodium reactor
This is a thermal-neutron reactor design. Decommissioning costs can be high due to the large volume of the reactor core. Liquid metal fast-breeder reactor (LMFBR) [moderator: none; coolant: liquid metal] Scaled-down model of TOPAZ nuclear reactor This totally unmoderated reactor design produces more fuel than it consumes.
When the reactor is prompt critical, the time to double the power is of the order of 10 microseconds. The duration necessary for temperature to follow the power level depends on the design of the reactor core. Typically, the coolant temperature lags behind the power by 3 to 5 seconds in a conventional LWR. In the SL-1 design, it was about 6 ...
Modern nuclear reactor designs have had numerous safety improvements since the first-generation nuclear reactors. A nuclear power plant cannot explode like a nuclear weapon because the fuel for uranium reactors is not enriched enough, and nuclear weapons require precision explosives to force fuel into a small enough volume to become supercritical.
The reactor, named the Aircraft Shield Test Reactor (ASTR), was operational but did not power the aircraft; the primary purpose of the flight program was testing the effectiveness of the shielding. Based on the results of the NTA, the X-6 and the entire nuclear aircraft program was abandoned in 1961.
The IPHWR (Indian Pressurized Heavy Water Reactor) is a class of Indian pressurized heavy-water reactors designed by the Bhabha Atomic Research Centre. [1] The baseline 220 MWe design was developed from the CANDU based RAPS-1 and RAPS-2 reactors built at Rawatbhata , Rajasthan.
The safety systems of the KLT-40S are designed according to the reactor design itself, physical successive systems of protection and containment, self-activating active and passive safety systems, self-diagnostic automatic systems, reliable diagnostics relating to equipment and systems status, and provisioned methods regarding accident control.
The reactor buildings of Bradwell magnox nuclear power station. The magnox reactors were considered at the time to have a considerable degree of inherent safety because of their simple design, low power density, and gas coolant. Because of this they were not provided with secondary containment features. A safety design principle at the time was ...