When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  3. Nonagon - Wikipedia

    en.wikipedia.org/wiki/Nonagon

    In geometry, a nonagon (/ ˈ n ɒ n ə ɡ ɒ n /) or enneagon (/ ˈ ɛ n i ə ɡ ɒ n /) is a nine-sided polygon or 9-gon. The name nonagon is a prefix hybrid formation , from Latin ( nonus , "ninth" + gonon ), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century.

  4. Hendecagon - Wikipedia

    en.wikipedia.org/wiki/Hendecagon

    Close approximations to the regular hendecagon can be constructed. For instance, the ancient Greek mathematicians approximated the side length of a hendecagon inscribed in a unit circle as being 14/25 units long. [7] The hendecagon can be constructed exactly via neusis construction [8] and also via two-fold origami. [9]

  5. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is

  6. Centered nonagonal number - Wikipedia

    en.wikipedia.org/wiki/Centered_nonagonal_number

    A centered nonagonal number (or centered enneagonal number) is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula [1]

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  8. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    The mass of an object of known density that varies incrementally, the moment of inertia of such objects, as well as the total energy of an object within a discrete conservative field can be found by the use of discrete calculus. An example of the use of discrete calculus in mechanics is Newton's second law of motion: historically stated it ...

  9. Concave polygon - Wikipedia

    en.wikipedia.org/wiki/Concave_polygon

    An example of a concave polygon. A simple polygon that is not convex is called concave , [ 1 ] non-convex [ 2 ] or reentrant . [ 3 ] A concave polygon will always have at least one reflex interior angle —that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive.