Search results
Results From The WOW.Com Content Network
The set Γ of all open intervals in forms a basis for the Euclidean topology on .. A non-empty family of subsets of a set X that is closed under finite intersections of two or more sets, which is called a π-system on X, is necessarily a base for a topology on X if and only if it covers X.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
In topology, a subbase (or subbasis, prebase, prebasis) for a topological space with topology is a subcollection of that generates , in the sense that is the smallest topology containing as open sets. A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are ...
Pointless topology (also called point-free or pointfree topology) is an approach to topology that avoids mentioning points. The name 'pointless topology' is due to John von Neumann . [ 9 ] The ideas of pointless topology are closely related to mereotopologies , in which regions (sets) are treated as foundational without explicit reference to ...
In topology, a cut-point is a point of a connected space such that its removal causes the resulting space to be disconnected. If removal of a point doesn't result in disconnected spaces, this point is called a non-cut point. For example, every point of a line is a cut-point, while no point of a circle is a cut-point.
The basis sets in the product topology have almost the same definition as the above, except with the qualification that all but finitely many U i are equal to the component space X i. The product topology satisfies a very desirable property for maps f i : Y → X i into the component spaces: the product map f : Y → X defined by the component ...
The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed. This is a list of topology topics. See also: Topology glossary; List of topologies; List of general topology topics; List of geometric topology topics
Locally compact spaces, for example, are those spaces that, at every point, have a neighbourhood basis consisting entirely of compact sets. Neighbourhood filter The neighbourhood system for a point (or non-empty subset) x {\displaystyle x} is a filter called the neighbourhood filter for x . {\displaystyle x.}