When.com Web Search

  1. Ad

    related to: unsupervised learning in detail definition

Search results

  1. Results From The WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  3. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Feature learning can be either supervised or unsupervised. In supervised feature learning, features are learned using labeled input data. Examples include artificial neural networks, multilayer perceptrons, and supervised dictionary learning. In unsupervised feature learning, features are learned with unlabeled input data.

  5. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cancer class but a 0% recognition rate for the non-cancer class. F1 score is even more unreliable in such cases, and here would yield over 97.4%, whereas informedness removes such bias and yields 0 as the probability of ...

  6. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The goals of learning are understanding and prediction. Learning falls into many categories, including supervised learning, unsupervised learning, online learning, and reinforcement learning. From the perspective of statistical learning theory, supervised learning is best understood. [4] Supervised learning involves learning from a training set ...

  7. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.

  8. Tesla (TSLA) Q4 2024 Earnings Call Transcript - AOL

    www.aol.com/tesla-tsla-q4-2024-earnings...

    And then unsupervised FSD in the U.S. this year, in many cities but nationwide next year. And hopefully, we have unsupervised FSD in most countries by the end of next year. That's my prediction ...

  9. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.