Search results
Results From The WOW.Com Content Network
When "E" is used to denote "expected value", authors use a variety of stylizations: the expectation operator can be stylized as E (upright), E (italic), or (in blackboard bold), while a variety of bracket notations (such as E(X), E[X], and EX) are all used. Another popular notation is μ X.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Then φ X (t) = e −|t|. This is not differentiable at t = 0, showing that the Cauchy distribution has no expectation. Also, the characteristic function of the sample mean X of n independent observations has characteristic function φ X (t) = (e −|t|/n) n = e −|t|, using the result from the previous section. This is the characteristic ...
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution.
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μ n := E[(X − E[X]) n], where E is the expectation operator.For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is
A probability distribution is not uniquely determined by the moments E[X n] = e nμ + 1 / 2 n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]