When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Three-dimensional X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_X-ray...

    Compared with destructive techniques, e.g. three-dimensional electron backscatter diffraction (3D EBSD), [5] with which the sample is serially sectioned and imaged, 3DXRD and similar X-ray nondestructive techniques have the following advantages: They require less sample preparation, thus limiting the introduction of new structures in the sample.

  3. Characterization (materials science) - Wikipedia

    en.wikipedia.org/wiki/Characterization...

    The characterization technique optical microscopy showing the micron scale dendritic microstructure of a bronze alloy. Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science ...

  4. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    Usually X-ray diffraction in spectrometers is achieved on crystals, but in Grating spectrometers, the X-rays emerging from a sample must pass a source-defining slit, then optical elements (mirrors and/or gratings) disperse them by diffraction according to their wavelength and, finally, a detector is placed at their focal points.

  5. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.

  6. Dark-field X-ray microscopy - Wikipedia

    en.wikipedia.org/wiki/Dark-field_X-ray_microscopy

    Three-dimensional X-ray diffraction (3DXRD): 3DXRD is a synchrotron-based technique that provides information about the crystallographic orientation of individual grains in polycrystalline materials. It can be used to study the evolution of microstructure during deformation and recrystallization processes and provides submicron resolution.

  7. Polymer characterization - Wikipedia

    en.wikipedia.org/wiki/Polymer_characterization

    The applied stress and the strain on the sample exhibit a phase difference, ẟ, which is measured over time. A new modulus is calculated each time stress is applied to the material, so DMA is used to study changes in modulus at various temperatures or stress frequencies. [16] Other techniques include viscometry, rheometry, and pendulum hardness.

  8. Energy-dispersive X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/Energy-dispersive_X-ray...

    Energy-dispersive X-ray diffraction (EDXRD) is an analytical technique for characterizing materials. It differs from conventional X-ray diffraction by using polychromatic photons as the source and is usually operated at a fixed angle. [1] With no need for a goniometer, EDXRD is able to collect full diffraction patterns very quickly.

  9. Powder diffraction - Wikipedia

    en.wikipedia.org/wiki/Powder_diffraction

    Nevertheless, powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify phases, and to refine details of an already known structure, rather than solving unknown structures. Advantages of the technique are: simplicity of sample preparation; rapidity of measurement