Search results
Results From The WOW.Com Content Network
For a parabola, the semi-latus rectum, , is the distance of the focus from the directrix. Using the parameter p {\displaystyle p} , the equation of the parabola can be rewritten as x 2 = 2 p y . {\displaystyle x^{2}=2py.}
The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.
where e is the eccentricity and l is the semi-latus rectum. As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
Menaechmus likely discovered the conic sections, that is, the ellipse, the parabola, and the hyperbola, as a by-product of his search for the solution to the Delian problem. [3] Menaechmus knew that in a parabola y 2 = L x, where L is a constant called the latus rectum , although he was not aware of the fact that any equation in two unknowns ...
The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).
The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation In celestial mechanics , a Kepler orbit (or Keplerian orbit , named after the German astronomer Johannes Kepler ) is the motion of one body relative to another, as an ellipse , parabola , or hyperbola , which forms a two ...
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. ... is the semi-latus rectum ... a parabola; and if e < 1 ...
The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.