When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.

  3. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

  6. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    For instance, when sampling from a Cauchy distribution, [30] the sample variance increases with the sample size, the sample mean fails to converge as the sample size increases, and outliers are expected at far larger rates than for a normal distribution. Even a slight difference in the fatness of the tails can make a large difference in the ...

  7. Contour boxplot - Wikipedia

    en.wikipedia.org/wiki/Contour_boxplot

    To construct a contour boxplot, data ordering is the first step. In functional data analysis, each observation is a real function, therefore data ordering is different from the classical boxplot where scalar data are simply ordered from the smallest sample value to the largest. More generally, data depth, gives a center-outward ordering of data ...

  8. Bagplot - Wikipedia

    en.wikipedia.org/wiki/Bagplot

    Example of a bagplot created in R. A bagplot, or starburst plot, [1] [2] is a method in robust statistics for visualizing two-or three-dimensional statistical data, analogous to the one-dimensional box plot. Introduced in 1999 by Rousseuw et al., the bagplot allows one to visualize the location, spread, skewness, and outliers of a data set. [3]

  9. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...