Search results
Results From The WOW.Com Content Network
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
Meyer's theorem is the best possible with respect to the number of variables: there are indefinite rational quadratic forms Q in four variables which do not represent zero. One family of examples is given by Q(x 1,x 2,x 3,x 4) = x 2 1 + x 2 2 − px 2 3 − px 2 4, where p is a prime number that is congruent to 3 modulo 4.
This is a list of articles about prime numbers.A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers.
If really is prime, it will always answer yes, but if is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2. [132] If this test is repeated n {\displaystyle n} times on the same number, the probability that a composite number could pass the test every time is at most 1 / 2 ...
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.
The prime constant is the real number whose th binary digit is 1 if is prime and 0 if is composite or 1. [ 1 ] In other words, ρ {\displaystyle \rho } is the number whose binary expansion corresponds to the indicator function of the set of prime numbers .
We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.
If either p n # + 1 or p n # − 1 is a primorial prime, it means that there are larger primes than the nth prime (if neither is a prime, that also proves the infinitude of primes, but less directly; each of these two numbers has a remainder of either p − 1 or 1 when divided by any of the first n primes, and hence all its prime factors are ...