Search results
Results From The WOW.Com Content Network
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
the circumcentre, which is the centre of the circle that passes through all three vertices; the centroid or centre of mass, the point on which the triangle would balance if it had uniform density; the incentre, the centre of the circle that is internally tangent to all three sides of the triangle;
1.4 Etc. 2 Applications. 3 ... the area is one quarter the circle when ... For calculating the area or locating the centroid of a planar shape that contains circular ...
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
Center of the triangle's inscribed circle. X 2: Centroid: G:: Intersection of the medians. Center of mass of a uniform triangular lamina. X 3: Circumcenter: O : : Intersection of the perpendicular bisectors of the sides. Center of the triangle's circumscribed circle. X 4: Orthocenter: H
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
In geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter.This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle.