When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth. The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object. When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces.

  3. Vector algebra - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra

    • Collinear Vectors: Parallel or anti-parallel vectors. • Coplanar Vectors: Lie in the same plane. 3. Operations on Vectors (i) Addition of Vectors • Triangle Law: \mathbf{A} + \mathbf{B} = \mathbf{C}, placing the tail of \mathbf{B} at the head of \mathbf{A}. • Parallelogram Law: The diagonal of the parallelogram represents the sum.

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  6. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows, and is denoted v + w. In the special case of two arrows on the same line, their sum is the arrow on this line whose length is the sum or the difference ...

  8. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    As a further complication, in geometric algebra the inner product and the exterior (Grassmann) product are combined in the geometric product (the Clifford product in a Clifford algebra) – the inner product sends two vectors (1-vectors) to a scalar (a 0-vector), while the exterior product sends two vectors to a bivector (2-vector) – and in ...

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    Subtraction of two vectors can be geometrically illustrated as follows: to subtract b from a, place the tails of a and b at the same point, and then draw an arrow from the head of b to the head of a. This new arrow represents the vector (-b) + a, with (-b) being the opposite of b, see drawing. And (-b) + a = a − b. The subtraction of two ...