When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The following table lists historical approximations to the Colebrook–White relation [23] for pressure-driven flow. Churchill equation [ 24 ] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [ 25 ] and Bellos et al. (2018) [ 8 ] equations also return an approximately correct ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = ⁠ 16 / Re ⁠ , it is the Fanning factor f , and if the formula for laminar flow is f D = ⁠ 64 / Re ⁠ , it is the Darcy–Weisbach factor f D .

  5. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...

  6. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .

  7. Roughness length - Wikipedia

    en.wikipedia.org/wiki/Roughness_length

    For example, in classical mechanics the coefficient of friction is commonly used to measure the roughness of a surface as it relates to the force exerted on another contacted object. And, in fluid dynamics, hydraulic roughness is a measure of the resistance water experiences when flowing over land or through a channel. All of these measures ...

  8. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...

  9. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    The friction coefficient is an empirical (experimentally measured) structural property that depends only on various aspects of the contacting materials, such as surface roughness. The coefficient of friction is not a function of mass or volume. For instance, a large aluminum block has the same coefficient of friction as a small aluminum block.