When.com Web Search

  1. Ad

    related to: creating your own word embeddings for sentences

Search results

  1. Results From The WOW.Com Content Network
  2. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    An alternative direction is to aggregate word embeddings, such as those returned by Word2vec, into sentence embeddings. The most straightforward approach is to simply compute the average of word vectors, known as continuous bag-of-words (CBOW). [9] However, more elaborate solutions based on word vector quantization have also been proposed.

  3. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    Unlike static word embeddings, these embeddings are at the token-level, in that each occurrence of a word has its own embedding. These embeddings better reflect the multi-sense nature of words, because occurrences of a word in similar contexts are situated in similar regions of BERT’s embedding space. [41] [42]

  4. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  5. Center embedding - Wikipedia

    en.wikipedia.org/wiki/Center_embedding

    For example: The man who heard that the dog had been killed on the radio ran away. One can tell if a sentence is center embedded or edge embedded depending on where the brackets are located in the sentence. [Joe believes [Mary thinks [John is handsome.]]] The cat [that the dog [that the man hit] chased] meowed.

  6. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Upper case variables represent the entire sentence, and not just the current word. For example, H is a matrix of the encoder hidden state—one word per column. S, T: S, decoder hidden state; T, target word embedding. In the Pytorch Tutorial variant training phase, T alternates between 2 sources depending on the level of teacher forcing used. T ...

  7. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The word with embeddings most similar to the topic vector might be assigned as the topic's title, whereas far away word embeddings may be considered unrelated. As opposed to other topic models such as LDA , top2vec provides canonical ‘distance’ metrics between two topics, or between a topic and another embeddings (word, document, or otherwise).

  8. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Other self-supervised techniques extend word embeddings by finding representations for larger text structures such as sentences or paragraphs in the input data. [9] Doc2vec extends the generative training approach in word2vec by adding an additional input to the word prediction task based on the paragraph it is within, and is therefore intended ...

  9. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]