Search results
Results From The WOW.Com Content Network
PSTN network topology is the switching network topology of a telephone network connected to the public switched telephone network (PSTN).. In the United States and Canada, the Bell System network topology was the switching system hierarchy implemented and operated from c. 1930 to the 1980s for the purpose of integrating the diverse array of local telephone companies and telephone numbering ...
Network topology is the arrangement of the elements (links, nodes, etc.) of a communication network. [1] [2] Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, [3] industrial fieldbusses and computer networks.
A mesh network is a local area network topology in which the infrastructure nodes (i.e. bridges, switches, and other infrastructure devices) connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data to and from clients.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Topology of a bus network. A bus network is a network topology in which nodes are directly connected to a common half-duplex link called a bus. [1] [2]A conceptual diagram of a local area network using bus topology
Figure 1.11. There is also a twin-T topology, which has practical applications where it is desirable to have the input and output share a common terminal. This may be, for instance, because the input and output connections are made with co-axial topology. Connecting an input and output terminal is not allowable with normal bridge topology, so ...
In all dimensions, the fundamental group of a manifold is a very important invariant, and determines much of the structure; in dimensions 1, 2 and 3, the possible fundamental groups are restricted, while in dimension 4 and above every finitely presented group is the fundamental group of a manifold (note that it is sufficient to show this for 4- and 5-dimensional manifolds, and then to take ...
In classical algebraic geometry (that is, the part of algebraic geometry in which one does not use schemes, which were introduced by Grothendieck around 1960), the Zariski topology is defined on algebraic varieties. [2]