Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function (which is a hypersurface in this case), but can be every intersection of the graph itself with a hyperplane (in the case of functions of two ...
Closed graph theorem [5] — If : is a map from a topological space into a Hausdorff space, then the graph of is closed if : is continuous. The converse is true when Y {\displaystyle Y} is compact .
Function with a sequentially closed graph. If f : X → Y is a function then the following are equivalent: f has a sequentially closed graph (in X × Y); (definition) the graph of f is a sequentially closed subset of X × Y; for every x ∈ X and sequence x • = (x i) ∞ i=1 in X such that x • → x in X, if y ∈ Y is such that the net f(x ...
Intuitively, the graph of a bounded function stays within a horizontal band, while the graph of an unbounded function does not. In mathematics , a function f {\displaystyle f} defined on some set X {\displaystyle X} with real or complex values is called bounded if the set of its values is bounded .
In this case, Y is the set of real numbers R with the standard metric d Y (y 1, y 2) = |y 1 − y 2 |, and X is a subset of R. In general, the inequality is (trivially) satisfied if x 1 = x 2. Otherwise, one can equivalently define a function to be Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all x 1 ≠ x 2,
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
A function can only have one output, y, for each unique input, x. If a vertical line intersects a curve on an xy-plane more than once then for one value of x the curve has more than one value of y, and so, the curve does not represent a function. If all vertical lines intersect a curve at most once then the curve represents a function. [1]