Search results
Results From The WOW.Com Content Network
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .
The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
A directed circuit is a non-empty directed trail (e 1, e 2, ..., e n) with a vertex sequence (v 1, v 2, ..., v n, v 1). A directed cycle or simple directed circuit is a directed circuit in which only the first and last vertices are equal. [1] n is called the length of the directed circuit resp. length of the directed cycle.
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding ...
The symmetric difference of two cycles is an Eulerian subgraph. In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of ...
circuit A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order. class 1.
For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.