When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    That is, the unoccupied d orbitals of transition metals participate in bonding, which influences the colors they absorb in solution. In ligand field theory, the various d orbitals are affected differently when surrounded by a field of neighboring ligands and are raised or lowered in energy based on the strength of their interaction with the ...

  3. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.

  4. d electron count - Wikipedia

    en.wikipedia.org/wiki/D_electron_count

    Ligand field scheme summarizing σ-bonding in the octahedral complex [Ti(H 2 O) 6] 3+.. According to Ligand Field Theory, the ns orbital is involved in bonding to the ligands and forms a strongly bonding orbital which has predominantly ligand character and the correspondingly strong anti-bonding orbital which is unfilled and usually well above the lowest unoccupied molecular orbital (LUMO).

  5. Spectrochemical series - Wikipedia

    en.wikipedia.org/wiki/Spectrochemical_series

    A spectrochemical series is a list of ligands ordered by ligand "strength", and a list of metal ions based on oxidation number, group and element.For a metal ion, the ligands modify the difference in energy Δ between the d orbitals, called the ligand-field splitting parameter in ligand field theory, or the crystal-field splitting parameter in crystal field theory.

  6. Transition metal complexes of thiocyanate - Wikipedia

    en.wikipedia.org/wiki/Transition_metal_complexes...

    Hard metal cations, as classified by HSAB theory, tend to form N-bonded complexes (isothiocyanates), whereas class B or soft metal cations tend to form S-bonded thiocyanate complexes. For the isothiocyanates, the M-N-C angle is usually close to 180°. For the thiocyanates, the M-S-C angle is usually close to 100°.

  7. Tanabe–Sugano diagram - Wikipedia

    en.wikipedia.org/wiki/Tanabe–Sugano_diagram

    Considering both weak and strong ligand fields, a Tanabe–Sugano diagram shows the energy splitting of the spectral terms with the increase of the ligand field strength. It is possible for us to understand how the energy of the different configuration states is distributed at certain ligand strengths.

  8. Crystal field theory - Wikipedia

    en.wikipedia.org/wiki/Crystal_field_theory

    According to crystal field theory, the interaction between a transition metal and ligands arises from the attraction between the positively charged metal cation and the negative charge on the non-bonding electrons of the ligand.

  9. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−.In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand.