When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change ...

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Photon gas - Wikipedia

    en.wikipedia.org/wiki/Photon_gas

    In physics, a photon gas is a gas-like collection of photons, which has many of the same properties of a conventional gas like hydrogen or neon – including pressure, temperature, and entropy. The most common example of a photon gas in equilibrium is the black-body radiation .

  5. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.

  6. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    Then the uncertainty relation for position and momentum says that , so the uncertainty in the particle's momentum satisfies . Using the relativistic relation between momentum and energy E 2 = ( pc ) 2 + ( mc 2 ) 2 , when Δ p exceeds mc then the uncertainty in energy is greater than mc 2 , which is enough energy to create another particle of ...

  7. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    The radiation pressure again can be seen as the transfer of each photon's momentum to the opaque surface, plus the momentum due to a (possible) recoil photon for a (partially) reflecting surface. Since an incident wave of irradiance I f over an area A has a power of I f A , this implies a flux of I f / E p photons per second per unit area ...

  8. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...

  9. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law may be expressed as a formula for radiance as a function of temperature. Radiance is measured in watts per square metre per steradian (W⋅m −2 ⋅sr −1 ). The Stefan–Boltzmann law for the radiance of a black body is: [ 9 ] : 26 [ 10 ] L Ω ∘ = M ∘ π = σ π T 4 . {\displaystyle L_{\Omega }^{\circ }={\frac ...