When.com Web Search

  1. Ad

    related to: poisson ratio k to m equation converter calculator worksheet word

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    ν ij is the Poisson ratio that corresponds to a contraction in direction j when an extension is applied in direction i. The Poisson ratio of an orthotropic material is different in each direction (x, y and z). However, the symmetry of the stress and strain tensors implies that not all the six Poisson's ratios in the equation are independent.

  3. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  4. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.

  5. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    The Poisson's ratio is a measure in which a material tends to expand in directions perpendicular to the direction of compression. After measuring the Young's modulus and the shear modulus, dedicated software determines the Poisson's ratio using Hooke's law which can only be applied to isotropic materials according to the different standards.

  6. P-wave modulus - Wikipedia

    en.wikipedia.org/wiki/P-wave_modulus

    Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  7. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  8. Talk:Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Talk:Poisson's_ratio

    The way the equation is defined won't give you a poisson's ratio of 0.5 for a perfectly incompressible material. It gives a ratio of 2 as defined in the article. Draw a quick before and after square diagram to see what I mean.

  9. Rhodium - Wikipedia

    en.wikipedia.org/wiki/Rhodium

    The primary use of this element is in automobiles as a catalytic converter, changing harmful unburned hydrocarbons, carbon monoxide, and nitrogen oxide exhaust emissions into less noxious gases. Of 30,000 kg of rhodium consumed worldwide in 2012, 81% (24,300 kg) went into this application, and 8,060 kg was recovered from old converters.