When.com Web Search

  1. Ads

    related to: secant rate of convergence practice questions worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if

  3. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...

  4. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  5. Sidi's generalized secant method - Wikipedia

    en.wikipedia.org/wiki/Sidi's_generalized_secant...

    Sidi's generalized secant method is a root-finding algorithm, that is, a numerical method for solving equations of the form () =.The method was published by Avram Sidi. [1]The method is a generalization of the secant method.

  6. Talk:Secant method - Wikipedia

    en.wikipedia.org/wiki/Talk:Secant_method

    Is there a fixed order of convergence for repeated roots with the secant method? For instance, with the Newton-Raphson method, R=2 (quadratic) for simple roots and R=1 for repeated roots. For the Secant Method, R=1.618.... for simple roots, but what about repeated/complex roots? Computer Guru 21:40, 26 May 2008 (UTC)

  7. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    If the result of the secant method, s, lies strictly between b k and m, then it becomes the next iterate (b k+1 = s), otherwise the midpoint is used (b k+1 = m). Then, the value of the new contrapoint is chosen such that f(a k+1) and f(b k+1) have opposite signs. If f(a k) and f(b k+1) have opposite signs, then the contrapoint remains the same ...

  8. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.

  9. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Replacing the derivative in Newton's method with a finite difference, we get the secant method. This method does not require the computation (nor the existence) of a derivative, but the price is slower convergence (the order of convergence is the golden ratio, approximately 1.62 [2]).