Search results
Results From The WOW.Com Content Network
Now consider a random variable X which has a probability density function given by a function f on the real number line. This means that the probability of X taking on a value in any given open interval is given by the integral of f over that interval.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .
Being a function of random variables, the sample variance is itself a random variable, and it is natural to study its distribution. In the case that Y i are independent observations from a normal distribution , Cochran's theorem shows that the unbiased sample variance S 2 follows a scaled chi-squared distribution (see also: asymptotic ...
For a discrete probability distribution, the mean is given by (), where the sum is taken over all possible values of the random variable and () is the probability mass function. For a continuous distribution , the mean is ∫ − ∞ ∞ x f ( x ) d x {\displaystyle \textstyle \int _{-\infty }^{\infty }xf(x)\,dx} , where f ( x ) {\displaystyle ...
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.