Search results
Results From The WOW.Com Content Network
The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.
Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon
Convergence in probability does not imply almost sure convergence in the discrete case [ edit ] If X n are independent random variables assuming value one with probability 1/ n and zero otherwise, then X n converges to zero in probability but not almost surely.
In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.
If is a stationary ergodic process, then () converges almost surely to = [] . The Glivenko–Cantelli theorem gives a stronger mode of convergence than this in the iid case. An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm .
In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers .
Then the sequence converges almost surely to a random variable with finite expectation. There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone ...
In particular, the proportion of heads after n flips will almost surely converge to 1 ⁄ 2 as n approaches infinity. Although the proportion of heads (and tails) approaches 1 ⁄ 2, almost surely the absolute difference in the number of heads and tails will become large as the number of flips becomes large. That is, the probability that the ...