When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    This process is known as thermohaline circulation. In the Earth's polar regions ocean water gets very cold, forming sea ice. As a consequence the surrounding seawater gets saltier, because when sea ice forms, the salt is left behind. As the seawater gets saltier, its density increases, and it starts to sink.

  3. Redfield ratio - Wikipedia

    en.wikipedia.org/wiki/Redfield_ratio

    Relationship of phosphate to nitrate uptake for photosynthesis in various regions of the ocean. Note that nitrate is more often limiting than phosphate The Redfield ratio or Redfield stoichiometry is the consistent atomic ratio of carbon , nitrogen and phosphorus found in marine phytoplankton and throughout the deep oceans.

  4. Seawater - Wikipedia

    en.wikipedia.org/wiki/Seawater

    The freezing point of seawater decreases as salt concentration increases. At typical salinity, it freezes at about −2 °C (28 °F). [1] The coldest seawater still in the liquid state ever recorded was found in 2010, in a stream under an Antarctic glacier: the measured temperature was −2.6 °C (27.3 °F). [2]

  5. Phosphorus cycle - Wikipedia

    en.wikipedia.org/wiki/Phosphorus_cycle

    The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere.Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, [1] as the main source of gaseous phosphorus ...

  6. Bjerrum plot - Wikipedia

    en.wikipedia.org/wiki/Bjerrum_plot

    Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...

  7. Water potential - Wikipedia

    en.wikipedia.org/wiki/Water_potential

    Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).

  8. Phosphatization - Wikipedia

    en.wikipedia.org/wiki/Phosphatization

    Large quantities of phosphate are required, either from seawater or from the tissues of the decaying organism. In some cases microbes control the phosphatization, and the remains of the microbes that feed on the preserved tissue form the fossil. In other, the tissue itself is the source of phosphate and its phosphatized remains form the fossil.

  9. Coastal hydrogeology - Wikipedia

    en.wikipedia.org/wiki/Coastal_hydrogeology

    Or intrusion of seawater increases the chemical concentration of water. Water is too saline to be drinkable. [47] Saline 10000-36000 Similar to seawater. Strong evaporation of groundwater or fully mixing with seawater. Hyper-Saline 36000-100000 Strong evaporation on seawater or groundwater under a closed system. Brine >100000