Search results
Results From The WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
"NP-complete problems are the most difficult known problems." Since NP-complete problems are in NP, their running time is at most exponential. However, some problems have been proven to require more time, for example Presburger arithmetic. Of some problems, it has even been proven that they can never be solved at all, for example the halting ...
The problem is a paradox of the veridical type, because the solution is so counterintuitive it can seem absurd but is nevertheless demonstrably true. The Monty Hall problem is mathematically related closely to the earlier three prisoners problem and to the much older Bertrand's box paradox.
One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...
TRIZ flowchart Contradiction matrix 40 principles of invention, principles based on TRIZ. One tool which evolved as an extension of TRIZ was a contradiction matrix. [14] The ideal final result (IFR) is the ultimate solution of a problem when the desired result is achieved by itself.
An issue tree showing how a company can increase profitability: A profitability tree is an example of an issue tree. It looks at different ways in which a company can increase its profitability. Starting from the key question on the left, it breaks it down between revenues and costs, and break these down into further details.
D0 also incorporates standard assessing questions meant to determine whether a full G8D is required. The assessing questions are meant to ensure that in a world of limited problem-solving resources, the efforts required for a full team-based problem-solving effort are limited to those problems that warrant these resources.
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [18]