Search results
Results From The WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In mechanics , for example, energy transfer equals the product of the force applied to a body and the resulting displacement.
For the definition of quantity of energy transferred as heat, it is customarily envisaged that an arbitrary state of interest Y is reached from state O by a process with two components, one adiabatic and the other not adiabatic. For convenience one may say that the adiabatic component was the sum of work done by the body through volume change ...
adiabatic cooling An adiabatic process of expansional cooling, in which a rising air parcel decreases in temperature as it increases in volume. [2] adiabatic heating. Also adiabatic warming. An adiabatic process of compressional warming, in which a sinking air parcel increases in temperature as it decreases in volume. [2] adiabatic lapse rate
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. This concept is used in many areas of physics and engineering.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An example of a cycle of idealized thermodynamic processes which make up the Stirling cycle. A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown.