Search results
Results From The WOW.Com Content Network
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
However, more insidious are missing solutions, which can occur when performing operations on expressions that are invalid for certain values of those expressions. For example, if we were solving the following equation, the correct solution is obtained by subtracting 4 {\displaystyle 4} from both sides, then dividing both sides by 2 ...
Each such number q is generated as a product of a subset of P, so there are 2 k − 1 Pell equations to solve. For each such equation, let x i, y i be the generated solutions, for i in the range from 1 to max(3, (p k + 1)/2) (inclusive), where p k is the largest of the primes in P. Then, as Lehmer shows, all consecutive pairs of P-smooth ...
Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.
The solution set for the equations = and + = is the single point (2, 3). An example of solving a system of linear equations is by using the elimination method: {+ = = Multiplying the terms in the second equation by 2:
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
The quadratic sieve attempts to find pairs of integers x and y(x) (where y(x) is a function of x) satisfying a much weaker condition than x 2 ≡ y 2 (mod n). It selects a set of primes called the factor base , and attempts to find x such that the least absolute remainder of y ( x ) = x 2 mod n factorizes completely over the factor base.