When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Find Q minimizing Tr( (Q − M) T (Q − M) ), subject to Q T Q = I. Though written in matrix terms, the objective function is just a quadratic polynomial. We can minimize it in the usual way, by finding where its derivative is zero. For a 3 × 3 matrix, the orthogonality constraint implies six scalar equalities that the entries of Q must satisfy.

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ The solution is the product ⁠. ⁠ [3] This intuitively makes sense because an orthogonal matrix would have the decomposition ⁠ ⁠ where ⁠ ⁠ is the identity matrix, so that if ⁠ = ⁠ then the product ⁠ = ⁠ amounts to replacing the singular values with ones.

  4. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain , the bilinear form may be the integral of the product of functions over the interval:

  5. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    This new matrix A 3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner: Q = G 1 T G 2 T . {\displaystyle Q=G_{1}^{T}\,G_{2}^{T}.}

  6. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  7. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.

  8. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.

  9. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  1. Related searches how to determine orthogonality equation given vectors in matlab matrix solution

    orthogonal functions in mathorthogonal functions wikipedia
    orthogonal functions plotexample of orthogonal function