Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
An arrangement of nine points (related to the Pappus configuration) forming ten 3-point lines.. In discrete geometry, the original orchard-planting problem (or the tree-planting problem) asks for the maximum number of 3-point lines attainable by a configuration of a specific number of points in the plane.
The designation E 6 comes from the Cartan–Killing classification of the complex simple Lie algebras (see Élie Cartan § Work). This classifies Lie algebras into four infinite series labeled A n, B n, C n, D n, and five exceptional cases labeled E 6, E 7, E 8, F 4, and G 2. The E 6 algebra is thus one of the five exceptional cases.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
In his speech, Hilbert presented the problems as: [6] The upper bound of closed and separate branches of an algebraic curve of degree n was decided by Harnack (Mathematische Annalen, 10); from this arises the further question as of the relative positions of the branches in the plane. As of the curves of degree 6, I have – admittedly in a ...
In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...
While this is not the best layout for r(6), similar arrangements of six, seven, eight, and nine disks around a central disk all having same radius result in the best layout strategies for r(7), r(8), r(9), and r(10), respectively. [2] The corresponding angles θ are written in the "Symmetry" column in the above table.