When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Observe that xlim sup X n if and only if xlim inf X n c. lim X n exists if and only if lim inf X n and lim sup X n agree, in which case lim X n = lim sup X n = lim inf X n. In this sense, the sequence has a limit so long as every point in X either appears in all except finitely many X n or appears in all except finitely many X n c.

  3. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in Xx 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.

  6. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    The plot of a convergent sequence {a n} is shown in blue. Here, one can see that the sequence is converging to the limit 0 as n increases. In the real numbers, a number is the limit of the sequence (), if the numbers in the sequence become closer and closer to , and not to any other number.

  7. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Also, characterisations (1), (2), and (4) for apply directly for a complex number. Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo 2 π i {\displaystyle 2\pi i} .

  8. Fatou's lemma - Wikipedia

    en.wikipedia.org/wiki/Fatou's_lemma

    This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).

  9. Fatou–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Fatou–Lebesgue_theorem

    Let f 1, f 2, ... denote a sequence of real-valued measurable functions defined on a measure space (S,Σ,μ).If there exists a Lebesgue-integrable function g on S which dominates the sequence in absolute value, meaning that |f n | ≤ g for all natural numbers n, then all f n as well as the limit inferior and the limit superior of the f n are integrable and