Search results
Results From The WOW.Com Content Network
Since a DRFM system is designed to create a false target to a radar system, this technology can be employed to perform hardware-in-the-loop simulation. [1] [2] Hardware-in-the-loop simulation is an aid to the development of new radar systems, which allows for testing and evaluation of the radar system earlier in the design cycle. This type of ...
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Radar echoes, showing a representation of the carrier. Pulse width also determines the radar's dead zone at close ranges. While the radar transmitter is active, the receiver input is blanked to avoid the amplifiers being swamped (saturated) or, (more likely), damaged.
Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e. ground clutter, jamming, etc.). Through careful application of STAP, it ...
The radar's AESA technology provides quick updates on multiple targets, and its solid-state antenna construction makes it more reliable and cost-effective than traditional radar systems. [2] The radar has a range of up to 150 km (80 nm) and can track multiple targets simultaneously. [ 3 ]
However, since humans reflect far less radar energy than metal does, these systems require sophisticated technology to isolate human targets and moreover to process any sort of detailed image. Through-the-wall radars can be made with Ultra Wideband impulse radar, micro-Doppler radar, and synthetic aperture radar (SAR). [5] Imaging radar; 3D radar
The Saab (formerly Ericsson Microwave Systems AB) Giraffe Radar is a family of land and naval two- or three-dimensional G/H-band (4 to 8 GHz) passive electronically scanned array radar-based surveillance and air defense command and control systems.
That means that a radar's received energy drops with the fourth power of the distance, which is why radar systems require high powers, often in the megawatt range, to be effective at long range. The radar signal being sent out is a simple radio signal, and can be received with a simple radio receiver.