Search results
Results From The WOW.Com Content Network
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure , and tend to decrease the electrical and thermal conductivity of the material.
Dislocations may be pinned due to stress field interactions with other dislocations and solute particles, creating physical barriers from second phase precipitates forming along grain boundaries. There are five main strengthening mechanisms for metals, each is a method to prevent dislocation motion and propagation, or make it energetically ...
Since the dislocation density increases with plastic deformation, a mechanism for the creation of dislocations must be activated in the material. Three mechanisms for dislocation formation are homogeneous nucleation, grain boundary initiation, and interfaces between the lattice and the surface, precipitates, dispersed phases, or reinforcing fibers.
Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.
As recovery proceeds these cell walls will undergo a transition towards a genuine subgrain structure. This occurs through a gradual elimination of extraneous dislocations and the rearrangement of the remaining dislocations into low-angle grain boundaries. Sub-grain formation is followed by subgrain coarsening where the average size increases ...
In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.
A dislocation can ideally move through a crystal until it reaches a grain boundary (the boundary between two crystals). When it reaches a grain boundary, the dislocation will disappear. In that case the whole crystal is sheared a little (needs a reference). There are however different ways in which the movement of a dislocation can be slowed or ...