Search results
Results From The WOW.Com Content Network
For example, in the above reaction, it can be shown that this is a redox reaction in which Fe is oxidised, and Cl is reduced. Note the transfer of electrons from Fe to Cl. Decomposition is also a way to simplify the balancing of a chemical equation. A chemist can atom balance and charge balance one piece of an equation at a time. For example:
The term redox state is often used to describe the balance of GSH/GSSG, NAD + /NADH and NADP + /NADPH in a biological system such as a cell or organ. The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate, beta-hydroxybutyrate and acetoacetate), whose interconversion is dependent on these ratios ...
In general, these redox balances (the one-line balance or each half-reaction) need to be checked for the ionic and electron charge sums on both sides of the equation being indeed equal. If they are not equal, suitable ions are added to balance the charges and the non-redox elemental balance.
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
"Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies" (PDF). Fasman GD, Editor. 1: 122– 130. Alberty, Robert A. (1998). "Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions".
Especially in proteins, electron transfer often involves hopping of an electron from one redox-active center to another one. The hopping pathway, which can be viewed as a vector, guides and facilitates ET within an insulating matrix. Typical redox centers are iron-sulfur clusters, e.g. the 4Fe-4S ferredoxins. These sites are often separated by ...
In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis: P i + glyceraldehyde-3-phosphate + NAD + → NADH + H + + 1,3-bisphosphoglycerate. In this reaction, NAD + is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate is the reductant (electron donor).
The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.