When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.

  3. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Since the square root is a strictly concave function, it follows from Jensen's inequality that the square root of the sample variance is an underestimate. The use of n − 1 instead of n in the formula for the sample variance is known as Bessel's correction , which corrects the bias in the estimation of the population variance, and some, but ...

  4. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    In estimating the population variance from a sample when the population mean is unknown, the uncorrected sample variance is the mean of the squares of deviations of sample values from the sample mean (i.e., using a multiplicative factor 1/n). In this case, the sample variance is a biased estimator of the population variance. Multiplying the ...

  5. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  6. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient, when applied to a sample, is commonly represented by and may be referred to as the sample correlation coefficient or the sample Pearson correlation coefficient. We can obtain a formula for r x y {\displaystyle r_{xy}} by substituting estimates of the covariances and variances based on a sample into the formula ...

  7. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike. [12] See also unbiased estimation of standard deviation for more ...

  8. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    This can be seen by noting the following formula, which follows from the Bienaymé formula, for the term in the inequality for the expectation of the uncorrected sample variance above: ⁡ [(¯)] =. In other words, the expected value of the uncorrected sample variance does not equal the population variance σ 2 , unless multiplied by a ...

  9. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent. Normality of the individual data values is not required if these conditions are met.