Ads
related to: determine function from graph equation givenstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A function can only have one output, y, for each unique input, x. If a vertical line intersects a curve on an xy-plane more than once then for one value of x the curve has more than one value of y, and so, the curve does not represent a function. If all vertical lines intersect a curve at most once then the curve represents a function. [1]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation y = f ( x ) {\displaystyle y=f(x)} in which the functional form is explicitly stated; this is called an explicit representation.
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
In the equation given at the beginning, the cosine function on the left side gives results in the range [-1, 1], but the value of the expression on the right side is in the range [,]. An applicable expression for ω ∘ {\displaystyle \omega _{\circ }} in the format of Fortran 90 is as follows:
In graph theory, Graph equations are equations in which the unknowns are graphs. One of the central questions of graph theory concerns the notion of isomorphism. We ask: When are two graphs the same? (i.e., graph isomorphism) The graphs in question may be expressed differently in terms of graph equations. [1]
This can be shown by taking the points X and Y to the standard points [::] and [::] by a projective transformation, in which case the pencils of lines correspond to the horizontal and vertical lines in the plane, and the intersections of corresponding lines to the graph of a function, which (must be shown) is a hyperbola, hence a conic, hence ...