Search results
Results From The WOW.Com Content Network
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Maximum point-blank range is principally a function of a cartridge's external ballistics and target size: high-velocity rounds have long point-blank ranges, while slow rounds have much shorter point-blank ranges. Target size determines how far above and below the line of sight a projectile's trajectory may deviate.
A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.
In other words, all the functions in the family must be locally bounded, and around each point they need to be bounded by the same constant. This definition can also be extended to the case when the functions in the family U take values in some metric space, by again replacing the absolute value with the distance function.
The set S obviously contains a, and is bounded by b by construction. By the least-upper-bound property, S has a least upper bound c ∈ [ a , b ] . Hence, c is itself an element of some open set U α , and it follows for c < b that [ a , c + δ ] can be covered by finitely many U α for some sufficiently small δ > 0 .
The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
A densely defined symmetric [clarification needed] operator T on a Hilbert space H is called bounded from below if T + a is a positive operator for some real number a. That is, Tx|x ≥ −a ||x|| 2 for all x in the domain of T (or alternatively Tx|x ≥ a ||x|| 2 since a is arbitrary). [8] If both T and −T are bounded from below then T is ...