Search results
Results From The WOW.Com Content Network
In aircraft, the directional stability determines such features as dihedral of the main planes, size of fin and area of tailplane, but the large number of important stability derivatives involved precludes a detailed discussion within this article. The missile is characterised by only three stability derivatives, and hence provides a useful ...
With a symmetrical rocket or missile, the directional stability in yaw is the same as the pitch stability; it resembles the short period pitch oscillation, with yaw plane equivalents to the pitch plane stability derivatives. For this reason, pitch and yaw directional stability are collectively known as the "weathercock" stability of the missile.
Directional stability is stability of a moving body or vehicle about an axis which is perpendicular to its direction of motion. Stability of a vehicle concerns itself with the tendency of a vehicle to return to its original direction in relation to the oncoming medium (water, air, road surface, etc.) when disturbed (rotated) away from that original direction.
In aircraft design, Dutch roll results from relatively weaker positive directional stability as opposed to positive lateral stability.When an aircraft rolls around the longitudinal axis, a sideslip is introduced into the relative wind in the direction of the rolling motion (due to the lateral component of lift when the wings are not level).
The vertical stabilizer is the fixed vertical surface of the empennage. A vertical stabilizer or tail fin [1] [2] is the static part of the vertical tail of an aircraft. [1] The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it.
The longitudinal stability of an aircraft, also called pitch stability, [2] refers to the aircraft's stability in its plane of symmetry [2] about the lateral axis (the axis along the wingspan). [1] It is an important aspect of the handling qualities of the aircraft, and one of the main factors determining the ease with which the pilot is able ...
The period is usually on the order of 3–15 seconds, but it can vary from a few seconds for light aircraft to a minute or more for airliners. Damping is increased by large directional stability and small dihedral and decreased by small directional stability and large dihedral.
In February 1976, work commenced to automate the methods contained in the USAF Stability and Control DATCOM, specifically those contained in sections 4, 5, 6 and 7.The work was performed by the McDonnell Douglas Corporation under contract with the United States Air Force in conjunction with engineers at the Air Force Flight Dynamics Laboratory in Wright-Patterson Air Force Base.