Search results
Results From The WOW.Com Content Network
In logical argument and mathematical proof, the therefore sign, ∴, is generally used before a logical consequence, such as the conclusion of a syllogism. The symbol consists of three dots placed in an upright triangle and is read therefore. While it is not generally used in formal writing, it is used in mathematics and shorthand.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
Therefore (Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip tomorrow". To make use of the rules of inference in the above table we let p {\displaystyle p} be the proposition "If it rains today", q {\displaystyle q} be "We will not go on a canoe today" and let r {\displaystyle r} be "We will go on a canoe ...
Therefore sign (U+2234 ∴ THEREFORE), a shorthand form of the word "therefore" or "thus" * In Japanese maps, the same symbol (∴) indicates an historic site. U+20DB ⃛ COMBINING THREE DOTS ABOVE character is a combining diacritical mark for symbols.
For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an anchor, which allows linking easily from another Wikipedia article. When an entry name contains ...
If p then q; and if r then s; but p or not s; therefore q or not r: Simplification [34] p and q are true; therefore p is true Conjunction, [34] p and q are true separately; therefore they are true conjointly Addition [34] [107]
We tracked down the week's best deals at Amazon, including an iPad that's $100 off and a range of beauty products that are marked down.
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference.