When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    The fact that every polynomial equation of positive degree has solutions, possibly non-real, was asserted during the 17th century, but completely proved only at the beginning of the 19th century. This is the fundamental theorem of algebra , which does not provide any tool for computing exactly the solutions, although Newton's method allows ...

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    As shown below, his proof is equivalent to demonstrating that the equation x 4 − y 4 = z 2. has no primitive solutions in integers (no pairwise coprime solutions). In turn, this is sufficient to prove Fermat's Last Theorem for the case n = 4, since the equation a 4 + b 4 = c 4 can be written as c 4 − b 4 = (a 2) 2.

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    When we allow the exponent n to be the reciprocal of an integer, i.e. n = 1/m for some integer m, we have the inverse Fermat equation a 1/m + b 1/m = c 1/m. All solutions of this equation were computed by Hendrik Lenstra in 1992. [169] In the case in which the mth roots are required to be real and positive, all solutions are given by [170]

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In general, a system with fewer equations than unknowns has infinitely many solutions, but it may have no solution. Such a system is known as an underdetermined system. In general, a system with the same number of equations and unknowns has a single unique solution. In general, a system with more equations than unknowns has no solution.

  8. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  9. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]