Search results
Results From The WOW.Com Content Network
Alias: When the estimate of an effect also includes the influence of one or more other effects (usually high order interactions) the effects are said to be aliased (see confounding). For example, if the estimate of effect D in a four factor experiment actually estimates (D + ABC), then the main effect D is aliased with the 3-way interaction ABC ...
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Summary statistics: Apply common Bayesian tests from frequentist summary statistics for t-test, regression, and binomial tests. Survival Analyses: non- & semi-parametric; Time Series: Time series analysis. Visual Modeling: Graphically explore the dependencies between variables. R Console: Execute R code in a console.
In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. [1] It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to ...
As another example, suppose that the data consists of points (x, y) that we assume are distributed according to a straight line with i.i.d. Gaussian residuals (with zero mean): this leads to the same statistical model as was used in the example with children's heights. The dimension of the statistical model is 3: the intercept of the line, the ...
The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers , so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics ).
Sample variance of x: s 2 x: 11 exact Mean of y: 7.50 to 2 decimal places Sample variance of y: s 2 y: 4.125 ±0.003 Correlation between x and y: 0.816 to 3 decimal places Linear regression line y = 3.00 + 0.500x: to 2 and 3 decimal places, respectively Coefficient of determination of the linear regression: 0.67 to 2 decimal places
In statistics and in empirical sciences, a data generating process is a process in the real world that "generates" the data one is interested in. [1] This process encompasses the underlying mechanisms, factors, and randomness that contribute to the production of observed data.