Search results
Results From The WOW.Com Content Network
The term "half-life" is almost exclusively used for decay processes that are exponential (such as radioactive decay or the other examples above), or approximately exponential (such as biological half-life discussed below). In a decay process that is not even close to exponential, the half-life will change dramatically while the decay is happening.
The exponential time-constant for the process is =, so the half-life is (). The same equations can be applied to the dual of current in an inductor. Furthermore, the particular case of a capacitor or inductor changing through several parallel resistors makes an interesting example of multiple decay processes, with each resistor representing ...
In principle a half-life, a third-life, or even a (1/√2)-life, could be used in exactly the same way as half-life; but the mean life and half-life t 1/2 have been adopted as standard times associated with exponential decay. Those parameters can be related to the following time-dependent parameters:
Derivation of equations that describe the time course of change for a system with zero-order input and first-order elimination are presented in the articles Exponential decay and Biological half-life, and in scientific literature. [1] [7] = C t is concentration after time t
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its maximum concentration ( C max ) to half of C max in the blood plasma .
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]