Search results
Results From The WOW.Com Content Network
The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the set of integers. When the sequences are the coefficients of two polynomials , then the coefficients of the ordinary product of the two polynomials are the convolution of the original two sequences.
In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.
The convolution theorem for the discrete-time Fourier transform (DTFT) indicates that a convolution of two sequences can be obtained as the inverse transform of the product of the individual transforms.
The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).
By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now denotes the discrete-time Fourier transform (DTFT) operator. Consider two sequences u [ n ] {\displaystyle u[n]} and v [ n ] {\displaystyle v[n]} with transforms U {\displaystyle U} and V {\displaystyle V} :
Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the product of two discrete sequences ...
Fig 1: A sequence of five plots depicts one cycle of the overlap-add convolution algorithm. The first plot is a long sequence of data to be processed with a lowpass FIR filter. The 2nd plot is one segment of the data to be processed in piecewise fashion.
A discrete convolution of the terms in two formal power series turns a product of generating functions into a generating function enumerating a convolved sum of the original sequence terms (see Cauchy product). Consider A(z) and B(z) are ordinary generating functions.