Search results
Results From The WOW.Com Content Network
It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of + , taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.
Of these, is the only fraction in this sequence that gives more exact digits of π (i.e. 7) than the number of digits needed to approximate it (i.e. 6). The accuracy can be improved by using other fractions with larger numerators and denominators, but, for most such fractions, more digits are required in the approximation than correct ...
where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).
Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7] Colin Maclaurin (1698–1746) Maclaurin also made significant contributions to the gravitation attraction of ellipsoids, a subject that furthermore attracted the attention of d'Alembert, A.-C ...