Search results
Results From The WOW.Com Content Network
Comparison of programming languages (array) Index origin, another difference between array types across programming languages; Matrix representation; Morton order, another way of mapping multidimensional data to a one-dimensional index, useful in tree data structures; CSR format, a technique for storing sparse matrices in memory
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
Natural language processing: Parse trees; Modeling utterances in a generative grammar; Dialogue tree for generating conversations; Document Object Models ("DOM tree") of XML and HTML documents; Search trees store data in a way that makes an efficient search algorithm possible via tree traversal. A binary search tree is a type of binary tree
A search tree is a tree data structure in whose nodes data values can be stored from some ordered set, which is such that in an in-order traversal of the tree the nodes are visited in ascending order of the stored values. Basic properties. Objects, called nodes, are stored in an ordered set.
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
"A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...
Underlying (inherited) implementations of various container types may vary in size, complexity and type of language, but in many cases they provide flexibility in choosing the right implementation for any given scenario. Container data structures are commonly used in many types of programming languages.
For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm (e.g. Frigo & Johnson, 2005), transposing the matrix in memory (to make the columns contiguous) may ...