When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  3. File:Jablonskidiagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Jablonskidiagram.svg

    English: Jablonski diagram - simplified for high school/UG kids. Date: 15 July 2009, 16:11: Source: I created this work entirely by myself. Author: Squidonius ...

  4. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...

  5. Fluorescence - Wikipedia

    en.wikipedia.org/wiki/Fluorescence

    Jablonski diagram. After an electron absorbs a high-energy photon the system is excited electronically and vibrationally. The system relaxes vibrationally, and eventually fluoresces at a longer wavelength than the original high-energy photon had.

  6. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    Jablonski diagram of FRET with typical timescales indicated. The black dashed line indicates a virtual photon.. Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1]

  7. File:Jablonski Diagram of Fluorescence Only-en.svg - Wikipedia

    en.wikipedia.org/wiki/File:Jablonski_Diagram_of...

    English: Jablonski diagram of absorbance, non-radiative decay, and fluorescence. Electronic transitions are about 1 eV. Vibrational transitions are about 0.1 eV. Rotational transitions (not shown) are about 0.001 eV. Absorption is about 1 femtosecond, relaxation takes about 1 picosecond, fluorescence takes about 1 nanosecond.

  8. 15 Important Life Skills Everyone Should Master Before Turning 40

    www.aol.com/15-important-life-skills-everyone...

    There are life skills that people need to have as we get older. Here are 15 of them that should be mastered before turning 40.

  9. Triplet-triplet annihilation - Wikipedia

    en.wikipedia.org/wiki/Triplet-Triplet_Annihilation

    A Jablonski diagram describing the mechanism of triplet-triplet annihilation. The energy of the first triplet excited state (T 1) is transferred to a second triplet excited state (T 1), resulting in (1) the first T 1 returning to the singlet ground state S0 and (2) the second T 1 promoting to the singlet excited state (S 1).