Search results
Results From The WOW.Com Content Network
The Hurwitz quaternions form an order (in the sense of ring theory) in the division ring of quaternions with rational components. It is in fact a maximal order ; this accounts for its importance. The Lipschitz quaternions, which are the more obvious candidate for the idea of an integral quaternion , also form an order.
The field of complex numbers is also isomorphic to three subsets of quaternions.) [22] A quaternion that equals its vector part is called a vector quaternion. The set of quaternions is a 4-dimensional vector space over the real numbers, with {,,,} as a basis, by the component-wise addition
The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry , namely the Hurwitz surfaces . [ 1 ]
The (2,3,7) triangle group admits a presentation in terms of the group of quaternions of norm 1 in a suitable order in a quaternion algebra. More specifically, the triangle group is the quotient of the group of quaternions by its center ±1. Let η = 2cos(2π/7). Then from the identity
Fascination with quaternions began before the language of set theory and mathematical structures was available. In fact, there was little mathematical notation before the Formulario mathematico. The quaternions stimulated these advances: For example, the idea of a vector space borrowed Hamilton's term but changed its meaning. Under the modern ...
Adolf Hurwitz (German: [ˈaːdɔlf ˈhʊʁvɪts]; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. Early life [ edit ]
Hurwitz and Frobenius proved theorems that put limits on hypercomplexity: Hurwitz's theorem says finite-dimensional real composition algebras are the reals , the complexes , the quaternions , and the octonions , and the Frobenius theorem says the only real associative division algebras are , , and .
move to sidebar hide. From Wikipedia, the free encyclopedia