Search results
Results From The WOW.Com Content Network
The upper-convected Maxwell (UCM) model is a generalisation of the Maxwell material for the case of large deformations using the upper-convected time derivative. The model was proposed by James G. Oldroyd. The concept is named after James Clerk Maxwell. It is the simplest observer independent constitutive equation for viscoelasticity and ...
It is named for James Clerk Maxwell who proposed the model in 1867. [2] [3] It is also known as a Maxwell fluid. A generalization of the scalar relation to a tensor equation lacks motivation from more microscopic models and does not comply with the concept of material objectivity. However, these criteria are fulfilled by the Upper-convected ...
In continuum mechanics, including fluid dynamics, an upper-convected time derivative or Oldroyd derivative, named after James G. Oldroyd, is the rate of change of some tensor property of a small parcel of fluid that is written in the coordinate system rotating and stretching with the fluid. The operator is specified by the following formula:
The Oldroyd-B model is an extension of the Upper Convected Maxwell model and is interpreted as a solvent filled with elastic bead and spring dumbbells. The model is named after its creator James G. Oldroyd. [13] [14] [15]
In statistical physics and thermodynamics, the Maxwell construction is a method for addressing the physically unrealistic aspects of certain models of phase transitions. Named for physicist James Clerk Maxwell , it considers areas of regions on phase diagrams .
The Oldroyd-B model is a constitutive model used to describe the flow of viscoelastic fluids. This model can be regarded as an extension of the upper-convected Maxwell model and is equivalent to a fluid filled with elastic bead and spring dumbbells. The model is named after its creator James G. Oldroyd. [1]
The material derivative is defined for any tensor field y that is macroscopic, with the sense that it depends only on position and time coordinates, y = y(x, t): +, where ∇y is the covariant derivative of the tensor, and u(x, t) is the flow velocity.
Upper-convected Maxwell model; Upper-convected time derivative; V. Viili; Visco-elastic jets; Viscoelasticity; W. Wagner model; Weissenberg number; Media in category ...