Search results
Results From The WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario. [93] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory. [94] See § Semantic proof via truth tables.
The tee (⊤, \top in LaTeX), also called down tack (as opposed to the up tack) or verum, [1] is a symbol used to represent: . The top element in lattice theory.; The truth value of being true in logic, or a sentence (e.g., formula in propositional calculus) which is unconditionally true.
The method of truth tables illustrated above is provably correct – the truth table for a tautology will end in a column with only T, while the truth table for a sentence that is not a tautology will contain a row whose final column is F, and the valuation corresponding to that row is a valuation that does not satisfy the sentence being tested.
Create tables, tabulars, figure environments, and so forth. Export a LaTeX document via TeX4ht (HTML or ODT format). Some of the LaTeX tags and mathematical symbols can be inserted in one click and users can define an unlimited number of snippets with keyboard triggers.
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
#if checks the truth value of a string; #ifeq checks whether two strings or numbers are equal; #switch compares a string to a set of possible values; #expr evaluates a mathematical expression; #ifexpr evaluates a mathematical expression and acts on the truth value of the result